
Evolving autonomous locomotion of virtual characters
in a simulated physical environment

via neural networks and evolutionary strategies

Stefan Marks
email: dev.stefan.marks@gmx.net

Wolfram Conen
email: wolfram.conen@informatik.fh-gelsenkirchen.de

Thomas Kollakowsky
email: thomas.kollakowsky@informatik.fh-gelsenkirchen.de

Gregor Lux
email: gregor.lux@informatik.fh-gelsenkirchen.de

University of Applied Sciences Gelsenkirchen
Department of Computer Science

Neidenburger Str. 43, 45877 Gelsenkirchen, Germany
http://www.informatik.fh-gelsenkirchen.de

Abstract

In this paper we examine principles to automatise or to support the process of
animation of an articulated character by allowing it to “learn” its movements au-
tonomously. For this, it is necessary to model the physical properties of the character,
connect virtual sensors and actuators to a neural network, and adjust the weights and
thresholds of the network with evolutionary strategies. We conclude with a discussion
and showcase of the results and present ways for further improvement.

Keywords

Animation, Virtual Reality, Physics, Simulation, Neural Network, Evolution, Gait

dev.stefan.marks@gmx.net
wolfram.conen@informatik.fh-gelsenkirchen.de
thomas.kollakowsky@informatik.fh-gelsenkirchen.de
gregor.lux@informatik.fh-gelsenkirchen.de
http://www.informatik.fh-gelsenkirchen.de

1. Introduction

Animating an articulated character (e.g.
for a movie) is a tedious process that has
not changed much since the beginning days
of animation. Even with todays modern
computer technology and computer based
characters, tools or methods only support
the animator (e.g. motion capture, bones,
frame interpolation, constraints), but do
not really relieve him of the task of moving
every body member separately to achieve a
natural looking locomotion.

We examined the approach to enable the
animator to simply give the virtual charac-
ter combinations of commands, like “walk
forward”, “turn left” which are then exe-
cuted in a natural looking way that needs
only minor tuning for a realistic look.

To achieve this, the virtual character
needs an artificial intelligence in form of
a neural network “attached” to his virtual
body. This network receives input from var-
ious kinds of sensors in the body like the
position of each joint, the force at the bot-
tom of the feet, the velocity and orientation
of the head, etc. It continuously processes
this information and generates output sig-
nals for actuators like virtual muscles that
enable the autonomous movement.

The most important question is, how the
neural networks “learns” the correct be-
haviour. One possible way could be to en-
able the network to learn continuously while
trying to improve its movements. This task
is rather complex, firstly because of the
difficulty to immediately decide whether a
movement is good or bad, and secondly be-
cause of the choice and implementation of
an appropriate learning algorithm.

In the following we examine the approach
of tuning the neural network parameters
with evolutionary algorithms.

2. Related Work

The basic idea of using evolutionary algo-
rithms to evolve movement dates back to
[11]. Since then, several approaches related
to this idea have been examined using ei-
ther principles similar to our work [7; 9; 10]
or different (e.g. genetic programming on
virtual register machines [14; 15], neural
network architectures similar to the human
cerebellum [12], additional evolution of the
morphology [8; 13]).

The commercial software endorphin from
NaturalMotion1 combines readily-trained
neural networks with accurate biomedical
models of bi- and quadruped characters.

Our work differs in at least three aspects
from one or more of these publications:

• Given morphology
With respect to the planned applica-
tion, our work starts with a given char-
acter morphology rather than the need
to evolve it at first.

• Multiple forms
The above works concentrate mostly
on just one form of a character whereas
we evolve the gaits of a mono-, bi- and
a quadruped.

• Universality
Instead of creating a single monolithic
program, we focus on a modular design
that enables the reuse and exchange of
components for related or even differ-
ent projects.

1http://www.naturalmotion.com

http://www.naturalmotion.com

3. Concept

Figure 1 shows the main functional blocks
necessary for the task:

virtual Character

Simulation Engine

virtual Character

Physics
Engine

Evolution
Engine

Neural
Network

parameterizes

simulates

controls

Render Engine

displays
Render Engine

displays

Figure 1: Functional blocks

The physics engine is responsible for
the realistic simulation of the physical prop-
erties of the virtual character and its en-
vironment (e.g. mass, inertia, forces, im-
pulses, joints, gravity, friction).

The neural network processes the sen-
soric information from the body and from
the environment of the virtual character
(e.g. joint positions, forces, contacts) and
outputs controller information for the ac-
tors (e.g. muscles, motors).

Physics engine and neural network to-
gether form the simulation engine.

One or more render engines connect via
network to the simulation engine and dis-
play the simulated data from the view of
virtual cameras. The display may be a sim-
ple screen, a beamer or the monitors of a
head mounted display (HMD).

The evolution engine is parameterizing
the weights, thresholds and other values of
the neural network according to fitness re-
sults of test runs. These results are calcu-
lated from the ability of a number of virtual

characters to complete a special task with
their neural network, e.g. walking forward,
standing still. Only the best rated networks
are then chosen, modified and passed on
into the next generation of virtual charac-
ters. After some time (and with a well cho-
sen rating function) the virtual characters
will start to evolve towards the wanted be-
haviour.

4. Results

4.1. Characters

We tried to evolve the locomotion of three
kinds of virtual characters (see figure 2):

Figure 2: Character morphologies

The monoped consists of a relatively
heavy head, a leg tilteable in two directions
(2-DOF, degrees of freedom) and a power-
ful extendable piston with a frictious foot
for jumping.

The biped is built with the same head
as the monoped, two humanlike legs with 1-
DOF hip, knee and ankle joints and plates
as feet.

The quadruped consists of a two seg-
mented body with a head, and four legs
with 2-DOF hip joints and 1-DOF knee
joints.

The structure of the neural network used
in the virtual characters (see figure 3) is
based upon results of the previously pre-
sented related works.

1

2

3

Input

B:foot
force:y

Input
x/z

CPG Output

J:hip
axis1:pos

J:hip
axis2:pos

J:piston
axis1:pos

Equilibrium
x/z

J:piston
axis1:pos

J:hip
axis2:pos

J:hip
axis1:pos

Figure 3: Neural network of the monoped

The hidden CPG layer consists of three
interconnected neurons (compare [6; 7; 8])
forming a Wilson-Cowan oscillator (see [4,
ch. 3]). This oscillator is capable of generat-
ing waveforms whose frequency, offset and
phase is controllable by the input neurons.

The oscillator is connected to the output
layer neurons driving the joint motors of
the character. The body sensors are con-
nected to the input layer. The networks of
the three character types differ only by the
number of input and output layer neurons.

With respect to [3] the CPG neurons were
initialised with values that allowed them to
oscillate from the beginning of the evolution
process on.

4.2. Evolution

An important question is the choice of evo-
lutionary operators and parameters (see e.g.
[1] for details). Due to lack of time we were
not able to test various combinations on
their influence on the results.

We chose a population size propor-
tional to the dimension of the neural net-
work to be optimised. For the monoped and
biped (62 respectively 93 parameters) we

used a population size of 100, whereas for
the quadruped (206 parameters) we chose
250.

Variations in the mutation rate and mu-
tation probability, the number of parents
per child and the number of children per
parents had only minor influence on the re-
sults. The final operators and parameters
used for the evolution processes are listed
in table 1.

Algorithm evolutionary strategies
Genotype real value
Population size 100 (monoped, biped), 250

(quadruped)
Reproduction 2 children per parents
Fitness rating proportional
Initialization non-random with oscillating

CPGs
Selection tournament selection, tour-

nament size 5
Recombination none because of “competing

convention” (see [5, S. 287])
Mutation randomly with adaptive

stepwidth by 1/5 success
rule and 10% mutation
probability

Reinsertion elitest reinsertion
Migration none
Termination running mean
Table 1: Operators and parameters for the evolu-

tion process

The most important aspect is the fitness
rating. On one hand it is the only fac-
tor that the evolution engine can rely on
to determine the fittest individuals. On the
other hand we found out that the exact and
precise construction of the fitness rating is
essential for a useful result of the evolution
process.

As long as the interpretion of the fitness
rating leaves any gaps, the evolution pro-
cess will find them. For the first experi-
ments we only tried to rate a character by
its distance from the starting point after a
specific amount of time or when it had fallen
down. The evolution algorithm found a way
for all three character forms to “cheat”. De-
sign faults in the physical simulation like
erroneous implementations of the joint mo-
tor control or in the collision detection were
found which resulted in “explosive” effects
that thrusted the character forwards. Al-
though obviously not very naturally looking
this way of locomotion was the best result
for a fitness rating when only concerning
the travelled distance.

In the end we came up with a fitness for-
mula that takes several factors into account:

The value d is the distance of the cen-
ter of the head ~xh(t) to the target posi-
tion ~xt(t) it “should” have at time t. r is a
maximum allowed radius around the target
position and ∆t is the time step of the Sim-
ulation. The further away the head is from
the radius, the smaller d gets.

d(t) =
∆t

max(0, |~xh(t) − ~xt(t)| − r)
(1)

The energy factor e is calculated from
the squares of all accelerations a of the
joints Ji, i ∈ (1 . . . NJ). This formula is
derived from the “minimum torque change
model”, described in [2, ch. 1.3.1]. The log-
arithm prevents the term from growing too
fast.

e(t) = log

(
1 +

NJ∑
i=1

a(t)2
Ji

)
(2)

Certain movements, positions or be-
haviours are regarded as penalty states.
They prevent the addition of the above
mentioned factors to the total fitness rat-
ing.

p(t) =

{
1 if not in penalty state

0 if in penalty state
(3)

The number of steps over time can be
determined by the change of the number of
feet that touch the ground. The number of
steps s is limited to smax to prevent a char-
acter doing a “tap dance” to get an over-
proportional fitness rating.

The factors are combined to a fitness rat-
ing term

Z(t) =
d(t) · p(t)

1 + e(t) · η
(4)

(with η as a weighing factor for the influ-
ence of the energy term) that is accumu-
lated over time and finally multiplied with
the number of steps to get the overall fitness
rating for the virtual character

Z = min(s, smax) ·
tend∑

t=tbegin

Z(t). (5)

4.3. Evolution runs

The monoped was the first virtual charac-
ter we experimented with. Several attempts
were necessary to remove errors in the phys-
ical simulation, the neural network or in the
fitness formula.

The first successful evolution run 9 re-
sulted in a character that was able to per-
form up to 6 jumps before falling down (see
figure 4a).

Further tests with randomly initialised
neural networks or 2- respective 4-neuron

CPGs resulted only in characters unable to
perform any locomotion.

For the biped too we needed several runs
in the beginning for getting rid of all con-
ceptual errors and flaws in the physical sim-
ulation.

Evolution run 20 produced a reflex based
walking gait (see figure 4b). The biped
walks in a rather stiff way until gravity is
turned off and the feet lose contact with the
ground. Then the movements stops until
contact is reestablished by turning gravity
back on.

For evolution run 24 the CPG was re-
placed by a 2-neuron version (see figure 4c).
The resulting biped walked more naturally
because it was driven by CPG-patterns.

A control run with identical parameters
(see figure 4d) surprisingly resulted in a
biped that was able to walk reflex-based
only by its ankles.

For the evolution runs of the quadruped
we were able to use our gathered experience
with the previous two character forms.

The finess rating for evolution run 1 was
again purely based upon the distance from
the starting point. The virtual character
“abused” a flaw in the collision detection
of the physical simulation to gain a high
locomotion speed.

Evolution run 2 was characterised by too
strong influence of the energy term which
led to a total motionless character.

The reduction of that factor in run 3 fi-
nally produced a walking gait. But because
of asymmetric movements the character was
only able to walk in a circle (see figure 4e).

Like with the other character types we
tested the influence of randomly initialised

networks in run 4. The result was another
character unable to move.

Control runs with identical parameters
repeatedly lead to characters with different
but nevertheless successful kinds of locomo-
tion (see figure 4f).

(a) Monoped, Run 9 (b) Biped, Run 20

(c) Biped, Run 24 (d) Biped, Run 26

(e) Quadruped, Run 3 (f) Quadruped, Run 6
Figure 4: Results of the evolution runs

5. Conclusions

Our experiments prove that it is possible to
evolve autonomous locomotion with evolu-
tionary algorithms2.

2Videos of the results are available at
http://cgr.informatik.fh-gelsenkirchen.
de/cerebellum/videos.

http://cgr.informatik.fh-gelsenkirchen.de/cerebellum/videos
http://cgr.informatik.fh-gelsenkirchen.de/cerebellum/videos

Nevertheless the amount of work to pro-
duce a naturally looking gait is not reduced
but shifted away from the animation to
the fine tuning of the evolutionary parame-
ters. Although many constellations of fit-
ness rating formulae were tested, the re-
sulting virtual characters were not moving
as naturally-looking as we had expected at
the beginning. With respect to the origi-
nally planned application of a software tak-
ing primitive commands from the animator,
there is some work left for further inves-
tigation. In any case the confrontation of
the animator with the fine-tuning of the fit-
ness formula should be avoided and instead
be replaced by e.g. some kind of predefined
presets of parameters.

Other necessary improvements can be
one or more of the following:
• The fitness rating should be designed

more carefully and with less possibili-
ties for misinterpretations. Several re-
sulting characters did not show any
rhythmic movements but only moved
as little as necessary to prevent a low
rating. The rating is the most vul-
nerable part of the whole principle.
Small changes can decide between suc-
cess and failure.

• The design of the the virtual char-
acters could be improved by more de-
tails like anatomically correct limbs or
biomedically modelled simulations of
nerves, muscles, tendons etc.

• A more complex neural network
could lead to refinement of the gener-
ated motion patterns but would expo-
nentially increase the search space for
the evolutionary algorithm. One may
think about a combination of online-
learning of short term cause-and-effect

aspects during a simulation run and
the long term progress by evolutionary
means.

• The search space of the evolutionary
algorithm may be reduced e.g. by eligi-
bility tests of the resulting neural net-
works. Those networks that are unable
to generate repetitive patterns do not
have to be tested in the simulation run.

• Interaction with the virtual character
during its simulation phase may speed
up the evolution process. Like holding
a child that learns to walk at its hands,
it may be possible to support the char-
acter in a similar way.

All of these factors should contribute to
better looking results and finally lead to an-
imation software where autonomous virtual
characters are told “what to do” instead of
moving and animating them tediously in ev-
ery detail.

References

[1] Lawrence David Davis, Kenneth
de Jong, Michael D. Vose, and L. Dar-
rell Whitley, editors. Evolutionary
Algorithms. Springer Verlag, 1999.

[2] Stefan Künzell. Motorik und Kon-
nektionismus: Neuronal Netze als
Modell interner Bewegungsrepäsenta-
tionen. bps-Verlag, 1996.

[3] Boonyanit Mathayomchan and Ran-
dall D. Beer. Center-crossing recur-
rent neural networks for the evolution
of rhythmic behavior. In Neural Com-
putation, volume 14, pages 2043–2051,
2002.

[4] Kazuki Nakada, Tetsuya Asai, and
Yoshihito Amemiya. Design of an ar-

tificial central pattern generator with
feedback controller. In Intelligent Au-
tomation and Soft Computing, vol-
ume 10, pages 185–192. TSI Press,
2004.

[5] Volker Nissen. Einführung in Evolu-
tionäre Algorithmen. Vieweg Verlag,
1997.

[6] Chandana Paul. Bilateral decoupling
in the neural control of biped locomo-
tion. In 2nd International Symposium
on Adaptive Motion of Animals and
Machines, 2003.

[7] Chandana Paul. Sensorimotor control
of biped locomotion based on contact
information. In International Sympo-
sium on Intelligent Signal Processing
and Robotics, 2004.

[8] Chandana Paul and J.C. Bongard. The
road less travelled: Morphology in the
optimization of biped robot locomo-
tion. In Proceedings of The IEEE/RSJ
International Conference on Intelli-
gent Robots and Systems, 2001.

[9] Torsten Reil and Phil Husbands. Evo-
lution of central pattern generators for
bipedal walking in a real-time physics
environment. In IEEE Transactions on
Evolutionary Computation, volume 6,
pages 159–168. Urban & Fischer, April
2002.

[10] Torsten Reil and Colm Massey. Bio-
logically inspired control of physically
simulated bipeds. In Theory in Bio-
sciences, volume 120, pages 327–339.
Urban & Fischer, December 2001.

[11] Karl Sims. Evolving virtual creatures.
In SIGGRAPH ’94 Proceedings, pages
15–22, 1994.

[12] Russell L. Smith. Intelligent Motion
Control with an Artificial Cerebellum.
PhD thesis, University of Auckland,
New Zealand, 1998.

[13] Steffen Wischmann. Entwicklung
der Morphologie und Steuerung eines
zweibeinigen Laufmodells, 2003.

[14] Krister Wolff and Peter Nordin.
An evolutionary based approach for
control programming of humanoids.
In Proceedings of the Third IEEE-
RAS International Conference on Hu-
manoid Robots, 2003.

[15] Krister Wolff and Peter Nordin.
Learning biped locomotion from first
principles on a simulated humanoid
robot using linear genetic program-
ming. In Proceedings of the Genetic
and Evolutionary Computation Con-
ference, 2003.

	Introduction
	Related Work
	Concept
	Results
	Characters
	Evolution
	Evolution runs

	Conclusions

