
USING GAME ENGINE TECHNOLOGY FOR VIRTUAL
ENVIRONMENT TEAMWORK TRAINING

Stefan Marks1, John Windsor2, Burkhard Wünsche1
1Department of Computer Science, Faculty of Science, The University of Auckland, New Zealand

2Department of Surgery, Faculty of Medicine and Health Sciences, The University of Auckland, New Zealand
stefan.marks.ac@gmail.com, j.windsor@auckland.ac.nz, b.wuensche@auckland.ac.nz

Keywords:
Serious Game, Source Engine, Medical Teamwork Training, Head Tracking, Non-Verbal Commu-
nication, Head-Coupled Perspective

Abstract:
The use of virtual environments (VE) for teaching and training is increasing rapidly. A particular
popular medium for implementing such applications are game engines. However, just changing
game content is usually insufficient for creating effective training and teaching scenarios. In this
paper, we discuss how the design of a VE can be changed to adapt it to new use cases. We
explain how new interaction principles can be added to a game engine by presenting technologies
for integrating a webcam for head tracking. This enables head-coupled perspective as an intuitive
view control and head gestures that are mapped onto the user’s avatar in the virtual environment.
We also explain how the simulation can be connected to behavioural study software in order to
simplify user study evaluation. Finally we list problems and solutions when utilising the free
Source Engine Software Development Kit to design such a virtual environment. We evaluate our
design, present a virtual surgery teamwork training scenario created with it, and summarize user
study results demonstrating the usefulness of our extensions.

1 INTRODUCTION

In recent years, virtual environments (VEs)
have become increasingly popular due to techno-
logical advances in graphics and user interfaces
(Messinger et al., 2009). One of the many valu-
able uses of VEs is teamwork training. The mem-
bers of a team can be located wherever it is most
convenient for them (e.g., at home) and solve a
simulated task in the VE collaboratively, without
physically having to travel to a common simula-
tion facility. Medical schools have realised this
advantage and, for example, created numerous
medical simulations within Second Life or simi-
lar VEs (Danforth et al., 2009).

To implement a VE, the developer has to
choose between three possibilities:

• To use a completely implemented commercial
or free VE solution like Second Life (Linden
Research, Inc, 2010). This has the advan-
tage of being able to completely focus on con-
tent creation instead of having to deal with

technical implementation questions and prob-
lems. However, the disadvantage is that these
frameworks cannot easily be extended with
additional functionality required for a specific
simulation scenario.

• To build a VE from scratch. This enables
complete freedom in the design and usability
of the VE, but significantly extends develop-
ment time.

• To use a simulation framework that can be
flexibly extended to account for special de-
sign requirements, but already provides a solid
foundation of functionality to achieve a quick
working prototype.

Whereas the first two options are located at
the opposite extremes of the spectrum, The last
option is located between these extremes in terms
of development flexibility and rapid prototyping.
A game engine, the underlying framework of com-
puter games, can be used as such a framework.
This is the principle behind “serious games”:

To use the technology of computer games, e.g.,
graphics, sound, physical simulation, multi-user,
but to replace and adapt the original content to
build “serious” applications, e.g., for education,
training, or simulation.

The literature provides several examples of
studies with simulation environments based on
game engines, e.g., Taekman et al. (2007), Mac-
Namee et al. (2006), Smith and Trenholme
(2009). For an extended review of serious games,
see Susi et al. (2007).

However, rarely does the reader find infor-
mation discussing design options, the advantages
and disadvantages of tools such as game engines,
and how to use them effectively and integrate
new functionalities. This makes it difficult for
researchers to extend existing simulations or cre-
ate new ones. Exceptions are papers like Ritchie
et al. (2006), where not only the used tools for the
development process but also source code details
are provided.

We have created a VE for medical teamwork
training which provides additional control mech-
anisms by using a webcam to capture the head
movement of the user. This head movement is
decomposed into the translational part which is
used for head-coupled perspective (HCP), and the
rotational part which is used to control head ges-
tures of the user’s avatar to convey non-verbal
communication cues. The results of our user
studies show that HCP improves the usability of
the VE as it introduces an intuitive view control
metaphor that even inexperienced users were able
to master within seconds. In addition, tracking-
based head gesture control of the avatar improved
the perceived realism of the simulation (Marks
et al., 2011).

This paper provides insight into the design
of game engines and their modification for ad-
vanced “serious games” applications. In partic-
ular we explain how new user interface devices
can be integrated. In our discussions, we use the
Source Engine (Valve Corporation, 2007) as ex-
ample, which, at the time of the survey, fulfilled
most of our simulation requirements: good graph-
ical and animation capabilities, availability of an
Software Development Kit (SDK) and developer
tools, and reliable synchronisation of physically
simulated objects among multiple clients. The
details of the selection process of a suitable en-
gine can be found in (Marks et al., 2007).

Section 2 presents the design of our VE frame-
work. In Section 3, we describe the details of the
implementation. A summary of the results of our

user studies conducted with the framework are
then presented and discussed in Section 4, and
we finish with the conclusion in Section 5.

2 DESIGN

The goal of the research described in this pa-
per is to utilise a game engine to implement a
virtual environment for surgical teamwork train-
ing. An important component in teamwork is
non-verbal communication, such as head gestures,
which we capture with a webcam and then map
onto avatars in the virtual environment. In ad-
dition we need an intuitive method for view con-
trol, since most surgical procedures require the
surgeon to use both hands for instruments. We
therefore decided to implement HCP using we-
bcam input. HCP changes the view of the VE
based on the movements of the user’s head po-
sition in front of the monitor. The implemen-
tation of these additional hardware components
and control metaphors is also part of this paper.

Realising our simulation scenario requires
changing the game content, gameplay, and inte-
gration of webcam input to control game engine
parameters. Figure 1 gives an overview of the ar-
chitecture of the resulting system. The sections
marked in red were developed, extended, or mod-
ified for the implementation. Figure 2 shows a
screenshot of the final VE for teamwork training
simulations.

Figure 2: Screenshot of the final surgical teamwork
simulator MedVE created from the original death-
match game code

The simulation is run on a central server that
all users connect to with their client computers.
The server as well as the clients run their part
of the VE engine, being constructed on top of

Client Computer

- Face detection
- Head tracking
- Eye tracking
- Expression recognition
- ...

User Monitor (Xpressor)

- Head orientation
- Gaze direction
- Facial expression
- ...

Data Model

Network
Server

Game Engine Client

Plug-InVE Engine Client

Training Scenario

Game Engine Server

VE Engine Server

Figure 1: The functional blocks of the simulation framework

the Source Engine. It is important to distin-
guish between the terms “game engine” referring
to components of the simulation framework that
are parts on the Source Engine itself and there-
fore cannot be altered, and “VE engine” referring
to components that are based on the Source SDK
and have been altered to create a VE with new
features and interactions.

The original game content on the server
is replaced by the teamwork training scenario.
This includes virtual rooms, objects, instruments,
sounds, textures, 3D models, etc.

On each client, an additional program, called
Xpressor, is running, using the input from the we-
bcam for tracking the user’s head and face. The
tracking information is sent in the form of a spe-
cific data model (see Section 3.3) to a plug-in of
the VE engine. By using an external tracking
program and the plug-in architecture, it is easily
possible to exchange these components later with
more advanced ones, without having to modify
the actual VE engine.

The translational head tracking information
is used to control the view “into” the VE. This
so called head-coupled perspective (HCP) enables
intuitive control, such as peeking around corners
by moving the head sideways, or zooming in by
moving the head closer to the monitor.

The rotational head tracking information is

used to control the head rotation of the user’s
avatar. That way, other users in the VE can see
head movement that is identical to the movement
actually performed physically by the user, such as
nodding, shaking, or rolling of the head.

In addition, data from face tracking can be
used to detect facial expressions and transfer
them onto the user’s avatar. Bartlett et al.
(2008), for example, present a system that recog-
nises a large set of movements of facial keypoints,
such as lip corners, eyebrows, or blinking. Using a
simpler set of movements and keypoints, Queiroz
et al. (2010) created a virtual mirror, where an
avatar mimics smile, gaze and head direction, and
an opened/closed/smiling mouth of the user in
realtime. In our implementation, we use a non-
commercial version of the face tracking library
faceAPI which does not include the detection of
facial expressions.

3 IMPLEMENTATION

In the following three sections, we will explain
the implementation of the three important com-
ponents of this framework: the virtual environ-
ment, the user monitor Xpressor, and the data
model.

3.1 Virtual Environment

3.1.1 Steam Client

The modification of a game that utilises the
Source Engine starts off with Steam, a client soft-
ware of the manufacturer Valve, designed to en-
able the user to buy games online, download and
install them, and to keep the games updated when
bugfixes or extras are released. Other features of
the Steam client include:

• Digital rights management: It is not possi-
ble to install and/or operate games that have
been acquired illegally.

• Social networking: A voice and text chat
client enables users to communicate with
friends to, e.g., organise an online game meet-
ing.

• Data management: Configurations and saved
games are not only stored on the local com-
puter but also on the Steam servers. This en-
ables users to log on to other computers and
to still have access to their saved games and
game configurations.

The disadvantage of having such a central sys-
tem is the dependency on the provider. When
Half-Life 2 was released in December 2004, the
huge demand on the servers brought the content
delivery system down, resulting in massive criti-
cism of Valve. It took the company some time to
stabilise their service to a point where it could be
considered user friendly and reliable again.

During the implementation phase, we had
mixed experiences with Steam. Purchasing and
installing the components that we used for the
VE was unproblematic, easy, and fast. However,
throughout the developing phase, updates were
released that would repeatedly break not only our
code, but also that of thousands of programmers
on other projects worldwide. In those times, the
forums were laden with emotional and even in-
sulting posts. A solution to the problem would
usually appear some time later, ranging from days
to several weeks.

In one specific case, an update broke the map
editor two weeks before we had planned to con-
duct a user study. Fortunately, at that time, all
maps were already implemented, but the prospect
of not being able to edit the maps in case of nec-
essary changes was worrying. From that event
on, as a precaution, we switched off the updating
functionality when user studies were about to be
conducted.

3.1.2 Creating a New Project

The Source SDK is available to anybody who
has purchased at least one game that utilises the
Source Engine, e.g., Half-Life 2, Team Fortress
2, Portal. With the help of the Steam client, the
SDK is easily downloaded and installed like any
other game.

The SDK offers a feature to create a new
project, called modification. For the first exper-
iments, we selected “Modify Half-Life 2 Multi-
player”. The code that is installed afterwards
forms a fully functional multiplayer game that
can then be modified.

Using a game with similar functionality to the
intended application, e.g., multi-player support,
this gives a good starting point to experiment
with the code and the game engine, and to start
modifying certain aspects of the game. Several
pages on the Valve Developer Community (VDC)
website give additional hints and ideas, for exam-
ple the “My First Mod” tutorial (Valve Developer
Community, 2010c).

In theory, this process is straightforward and
unproblematic. In practice, the SDK installer
crashed at the end of the installation process.
Several repeated attempts with different target
directories did not prevent the installer from fail-
ing. However, after each crash, the code seemed
to be completely installed. Therefore, we opened
the project with Microsoft Visual Studio 2008 in
order to compile the code. A first attempt ended
with several error messages, caused by source files
that were missing in the list of project files. This
problem was easily solved by adding those files to
the project. The second attempt caused a com-
piler crash that had to be fixed by changing some
lines in the code, as described in Valve Developer
Community (2010a).

Finally, after some additional but only minor
problems, the code compiled and could be exe-
cuted.

3.1.3 Version Control

Directly after creating and compiling the modi-
fication project, we put the code under version
control, using Subversion (The Apache Software
Foundation, 2011), as described in Valve Devel-
oper Community (2010f). That way, we were able
to update the code with changes that were ap-
plied to the SDK later in the development pro-
cess.

Figure 3 shows the version control tree to-
wards the end of the development phase. At the

5

/current
/sourcesdk
/vendor

6

/sourcesdk_ob-20081204
/sourcesdk
/vendor

7

/teamwork
/trunk

8

51

54
...
141
142

52

53

/sourcesdk_ob-20090826
/sourcesdk
/vendor

...

Figure 3: Version control structure of the project

beginning of the project (revision 5), we checked
in the code as the original vendor code and tagged
it with a timestamp (revision 6). From that
tagged revision, we branched the working copy
(revision 7) and worked on it for the duration of
the project, checking in the changes after major
alterations (revisions 8 to 51).

At the end of August 2008, Source released a
major update of the SDK code. We checked in
that code under an updated timestamp tag (re-
visions 52 and 53) and merged the changes from
the old version (revision 6) to the new version into
the main working directory. Afterwards, revision
54 contained the code we had changed since revi-
sion 7, including the changes from the old SDK
to the new.

This merging process is the main advantage of
maintaining a version control system: To be able
to incorporate updates to the original code with-
out having to worry about all the own changes to
the project. Other advantages include the forced
documentation of major changes and the ability
to compare code of two revisions to get an idea
of the history of changes to a file or a class.

3.1.4 Concepts of the Source Engine

Gaining an understanding of the design and func-
tionality of the Source Engine was a very time-
consuming process. At first sight, the developer
website creates an impression of a thorough doc-
umentation. But when it comes down to details
and specific questions, this documentation reveals
large gaps and provides outdated or even contra-
dictory information.

Throughout the development phase, our ma-
jor source of information has been the Steam
User’s Forum, specifically the Source Coding Fo-
rum (Valve Corporation, 2010). Searches by key-

words usually brought up helpful advice. An un-
spoken rule of the forum was to search thoroughly
for an answer to your issue first, before you would
post a question as a new thread. Not adhering
to that rule would usually result in an insulting
response, such as “[. . .] maybe if you bothered
using the search bar you’d find this.”, or in no
response at all.

However, the majority of work necessary for
understanding the Source Engine was to read
through the provided code of the SDK, ignore sev-
eral inconsistently implemented naming conven-
tions, insert execution breakpoints, trace method
calls through several class inheritance levels, and
much more.

The quality of the SDK code is, in our opin-
ion, not very high, considering the fact that this is
a codebase that is delivered to developers world-
wide. It gives the impression of being developed
to a level that makes the final program work just
fine and then not being maintained any more. We
frequently found comments such as the following,
confirming that impression:

• Tony; the ugliest class definition
ever, but it saves characters, or
something. Should I be shot for
this?

• FIXME: Do we want this?

• FIXME: Should this be local to
c env spritegroup?

• FIXME: why is this called here?
Nothing should have changed to make
this [sic] nessesary

Good documentation and a well structured
codebase is important for any game engine that
is to be the foundation of a simulation. With-
out these prerequisites, a lot of time is spent on
deciphering the inner workings of the underlying
code or on figuring out how to achieve a certain
functionality, instead of implementing the essen-
tial parts of the program.

In the following sections, we will present some
of the major concepts of the Source Engine that
played an important role in the development and
modification phase.

Game Engine/SDK Boundaries When a
multi-user Source Engine game is started, four
program parts are involved (see Figure 4):

• The game engine (hl2.exe) is executed, con-
sisting of the server

• and the client part.

Game Client / client.dll

Engine Client

Game Server / server.dll

Engine Server

IBaseClientDLL

IVEngineClient

IServerGameDLL

cdll_int.h

IVEngineServer

eiface.h

▪ Initialise/shutdown
▪ Calculate view, render frame
▪ Process mouse/keyboard event
▪ Prepare data for saving/loading
▪ ...

Get player/object info ▪
Execute server/client command ▪

Get map/game settings ▪
Get system settings/time/screen size ▪

… ▪

▪ Initialise/shutdown
▪ Simulate one frame
▪ Provide map information
▪ Prepare data for saving/loading
▪ ...

Load/change map ▪
Create/destroy/move entities ▪

Simulate physical objects ▪
Emit sounds ▪

… ▪

S
ou

rc
e

S
D

K
S

ou
rc

e
E

ng
in

e
hl
2.
ex
e

Figure 4: Boundaries between the Source SDK and the Source Engine

Depending on whether the user chooses to start
a new game server or to connect to an existing
game server, the engine then activates

• either the game server dynamic link library
(DLL) server.dll

• or the game client DLL client.dll.

The game engine itself cannot be modified at
all. No source code of the inner workings of the
engine is given.

The SDK contains header files with inter-
face definitions for the server (eiface.h) and the
client part (cdll_int.h) of the engine. These in-
terfaces provide access to very basic entity and
resource management, and to the sound, graph-
ics, and system functions of the engine.

It is possible to build a game completely from
scratch, using only those header files. However,
the SDK delivers a comprehensive set of classes
and methods that, in its entirety, already consti-
tutes a complete game. Starting from this point,
the developer can now modify, remove or add cus-
tom parts to this framework. The advantage is
rapid prototyping, as long as the result does not
differ much from the original kind of game.

However, with every additional change that
is necessary to get away from the original game
towards the final product, it gets more and more
difficult to implement the changes. Some of these
difficulties are described in Section 3.1.5.

Client-Server Architecture Games and VEs
for multiple users are mostly constructed using a
client/server architecture (Valve Developer Com-
munity, 2010e). The basic principle of client and
server communication of a game based on the
Source Engine is shown in Figure 5.

The server is mainly responsible for running
the simulation, updating the position, orienta-
tion, and speed of animated and physically sim-
ulated objects. In regular intervals, e.g., ev-
ery 33 ms (=30 Hz), it receives compressed com-
mand packets from the clients, carrying informa-
tion about mouse movement, keyboard input, and
other events that the users on the clients have
triggered. These command packets are unpacked,
checked, and their effect is taken into considera-
tion for the simulation: avatars move, objects are
picked up or released, sounds are played, etc. Af-
ter each simulation step, the new state of all ob-
jects and avatars is sent to the clients which can
in turn update the changed state of the world on
the screen.

During the runtime, each simulated object in
the VE exists in two versions: One version, the
“server entity”, is managed on the server, and
is actively simulated. The second version, the
“client entity”, exists on each client and is kept in
sync with the server version by network variables
(Valve Developer Community, 2010d).

These variables automatically take care of
maintaining a synchronous state between the
server and all clients. As soon as a variable value
changes, its value is marked for transmission on
the next update data packet from the server to
the clients. To conserve bandwidth, the values
are being compressed and only sent when they
have changed. This mechanism is important to
enable fluid gameplay on low-bandwidth connec-
tions, e.g., dial-up.

Prediction The fact that clients have to wait
for a data packet from the server to show the up-
dated world has a major drawback: Users would
experience a noticeable delay to their actions, es-

ClientsClients

User Avatar
Client Entity

User Avatar
Server Entity

User Avatar
Client Entity

Input Module

Client Server Clients

Control Input

Client Data Packet

Build compressed
client data packet

Unpack and evaluate

Network VariablesNetwork Variables

Display on screen Display on screen

Run simulation step

other Client
Data Packets

User

Figure 5: Data exchange between clients and the server of a multi-user game based on the Source Engine

pecially on slow network connections.
To avoid this delay and to provide a fast and

responsive game, the client predicts the response
of the server and uses this prediction for an im-
mediate response to user input. When the client
later receives the real server response, it corrects
the prediction, if necessary.

For the prediction, the client needs to have
the same rules and simulation routines as the
server. In the SDK, this is implemented by a ma-
jor duplication of code for the server and client
entity representations. Instead of physical dupli-
cation, shared code is contained in shared source
files (e.g., physics_main_shared.cpp) that are
included in both, client and server projects.

Following the naming convention of the Source
SDK, server classes are named CClassName
and stored in a server/classname.cpp/.h file,
while client classes are named C_ClassName
and stored in a client/c_classname.cpp/.h
file1. Shared code is usually stored in a
shared/classname_shared.cpp/.h file.

Preprocessor directives are used to “rename”
class names based on whether they belong to the
server (#define GAME_DLL) or to the client rep-
resentation (#define CLIENT_DLL), for example:

#ifdef CLIENT_DLL
class C_TeamworkPlayer;

#else
class CTeamworkPlayer;

#endif

or

// Hacky macros to allow shared code

1The SDK code itself, however, does not follow
that naming convention very strictly.

// to work without even worse macro-izing
#if defined(CLIENT_DLL)
#define CBaseEntity C_BaseEntity
#define CBaseAnimating C_BaseAnimating
#define CBasePlayer C_BasePlayer

#endif

Inarguably, this reduces the amount of typed
code. But on the other hand, it increases the
complexity, and reduces the maintainability and,
most of all, the readability of the code. The pre-
processor “renaming” made it sometimes impos-
sible for us to trace through the inheritance struc-
ture of client classes, because it would always end
up in the source code files for the server classes.

3.1.5 Stripping Down the Engine

The next big step, after understanding the en-
gine, was to strip the project code of unnec-
essary classes and entities, e.g., weapons and
the player health indicator. This step proved
very difficult due to numerous interdependencies
within the code. Weapon related code especially,
was very deeply integrated into basic classes.
Removal of one class file would break several
other classes. It required a lot of re-compilation
passes and uncommenting of code sections with
#if 0 ... #endif preprocessor constructs, un-
til the code would compile again.

3.1.6 SDK Inconsistencies

Several times, we stumbled over inconsistencies
in the SDK code. As an example, the client rep-
resentation of the player (class C_BasePlayer)
has a dedicated method bool ShouldDraw() to

decide whether or not the player model should
be drawn at all. The model has to be drawn
when the user is in third person view, but not
when the user is in a menu at the start of the
game. When that method returns true, the
DrawModel() method is called, and displays the
player model on the screen.

During the development phase, we wanted to
add “body awareness” (see Section 3.1.9), so that
the user can see their own avatar’s body when
looking down. In theory, this required only a
small change in the method, making it return
true not only in third person view, but also in
first person view. Interestingly, the addition did
not result in any changes.

After some time of method call tracing, we
discovered that the DrawModel() method also
contained some conditional statements that pre-
vented the model from being drawn. After
we had moved those conditional statements into
the semantically correct location inside of the
ShouldDraw method, the player model was drawn
as expected.

3.1.7 Changing the Interaction

One major change in the original SDK death-
match game style was the primary interaction
type. After we had removed all weapons, we
wanted to assign the left mouse button click to
grabbing and releasing of physical objects, and to
triggering of interactions with objects, e.g., but-
tons or patients.

This seemingly simple change required a lot of
reworking in the code to create access methods to
the objects that the user interacts with, to enable
users to take objects from each other, and to log
all of those interaction events.

On a visual level, we wanted the avatars to
grab an object with the right hand as soon as the
user would pick it up. This can be implemented
with inverse kinematics (IK): When the target
position of the hand is given, IK calculates the
position of the animating bones of the arm so that
the attached hand reaches that position exactly.

The Source Engine is capable of IK, as can be
seen in Half-Life 2 – Episode 2, where a certain
tripod character always touches the ground with
all three feet. However, Valve Developer Com-
munity (2010b) states that in multi-player games,
IK is not activated due to difficulties and perfor-
mance reasons on the server.

Our queries in the developer forums resulted
in a confirmation that the engine is capable of IK,

but nobody was able to give an answer on how to
do it.

For this reason, grabbed objects “float” in
front of the avatar while they are carried around.
However, this flaw in realism did not distract the
participants of the user studies. Some of them
even made fun of the strange appearance, men-
tioning “Jedi-powers”.

3.1.8 Changing the User Interface

Together with the change of the interaction
style, we redesigned parts of the user interface.
Among these changes was the replacement of the
crosshair with a viewpoint indicator. In the orig-
inal SDK, the centre of the screen is marked by a
crosshair, indicating the point where the weapon
would be fired at.

With the removal of any weapon related code,
the crosshair turned into a viewpoint indicator.
After some experiments with different indicator
styles, We chose a segmented circle that turns
green as soon as an interactive object is in focus,
and closes when a physical object is grabbed and
held (see Figure 6). Such a circle has an improved
visibility over, e.g., a simple point. It is also less
associated with weapons than, e.g., a crosshair.

The original weapon crosshair was simply
painted at the centre of the screen. With the
inclusion of head tracking however, we had to ex-
tend that part of code with a calculation of the
point that the user would look at, considering the
eye position offset caused by head rotation and
translation.

Figure 6: Different styles for the viewpoint indicator

3.1.9 Body Awareness

In the original SDK, the user cannot see the
avatar’s own body when looking down, as shown
in the leftmost screenshot in Figure 7. To create
body awareness, we had to change several aspects:

1. The body model has to be drawn when the
game is in first-person view (see Section 3.1.6
for problems with the code concerning this as-
pect).

2. The camera viewpoint has to be synchronised
with any animation of the body model, e.g.,
walking, standing idle. To achieve this, the
camera position is constantly updated with
the position of the eyeballs of the avatar
model.

3. When looking up or down, the vertical head
rotation cannot simply be translated into a
camera rotation, because in that case the user
would be able to see the inside of the head or
the body (see left screenshot in Figure 7). We
added a forwards translation to the camera
that is slightly increased when the user looks
up or down. Together with correct settings for
the near and far plane of the camera frustum,
this creates a realistic body awareness with-
out literally having “insight” into the avatar
model.

Figure 7: Creating body awareness for the avatar

We had planned to use IK to visualise the head
movement caused by head tracking. Physical,
translational head movement of the user would
then have resulted in identical translational up-
per body and head movement of the avatar. As
a result, an avatar would lean forward or side-
ways in sync with the user who is controlling it.
However, we were not able to implement this fea-
ture due to the difficulties with IK described in
Section 3.1.7.

3.1.10 Textures

The original textures of the SDK are designed
for creating games that are set in a post-war era.
These textures are, in general, worn down and
dull, creating a depressive feeling in all maps cre-
ated with them.

We replaced some of the wall, floor, and ceil-
ing textures with synthetic textures that look like
clean tiles. The regular style of the tile textures
creates a very organised, sterile look. The realism
of the rooms created with these textures could be
increased further by using photos of real rooms.
However, this was not a priority for our research,
but it is an indicator of the complexity of creating
realistic environments.

Figure 8: Examples of a room with the original Source
SDK textures (left) and the custom textures for the
user studies

3.1.11 Data Logging

We also implemented a data logging module that
records user head movement, user interactions,
and gaze targets and duration. The generated
logfiles enable us to analyse individual and team-
work scenarios for statistical evaluations. An
additional benefit, especially for teamwork as-
sessment, is the ability of the logfiles to be im-
ported into external assessment tools, like the
behavioural analysis tool Observer XT shown in
Figure 9 (Noldus Information Technology, 2010).
This import eliminates the need for human as-
sessors to observe a teamwork recording again to
create a list of actions and behaviours. All this
information is already present in the VE engine
during the simulation and can therefore be di-
rectly exported into the logfile.

Figure 9: Observer XT visualising interactions,
movements, and talk patterns of a teamwork simu-
lation

3.2 Xpressor

Xpressor is the program that we developed for
encapsulating the head tracking library faceAPI.

The program communicates bidirectionally with
the VE engine, using two local user datagram pro-
tocol (UDP) connections.

Figure 10: Screenshot of the user interface of Xpres-
sor

The communication with the VE engine oc-
curs through a plug-in, as shown in Figure 1. The
Source SDK has certain settings and abstraction
layers that prevent the direct use of networking
functions and several other operating system re-
lated functions. However, it is possible to load
plug-in DLLs and to exchange data with them.
We therefore created a simple Xpressor plug-in
that is loaded in the beginning, accepts the UDP
connection, and relays the following data into the
VE engine:

• translational and rotational tracking data,

• a low resolution video stream,

• information regarding whether the user is
speaking or not, and

• values to control the facial expression of the
avatar.

The video stream is helpful for the user e.g.,
to adjust his or her position at the beginning
of a simulation. To conserve bandwidth, the
video is resized to 100 × 60 pixel, converted to
4 bit greyscale, and transmitted with 10 fps via
a separate UDP connection.

The program also monitors the signal strength
of the connected microphone, signalising the VE
engine via a flag whether the user is speaking or
not. The state of this flag is determined by a
simple signal energy threshold algorithm.

Xpressor is written in C++, using the
Microsoft Foundation Classes (MFC) for the
graphical user interface (GUI) (see Figure 10).
For the control of the facial expression, we devel-

oped a custom circular controller interface, visu-
alising six expression types as circle segments and
the strength of the expression by the distance of
the controller position from the centre of the cir-
cle.

While sitting in front of the screen, the user in-
advertently shifts his or her neutral head position
relative to the camera. As a result, any concept
relying on an absolute position will reflect that
drift in a slowly changing view of the VE. Simi-
lar to the recommendations from Sko and Gard-
ner (2009) for games using HCP, we have imple-
mented a configurable automatic slow adjustment
of the neutral position towards the average of the
measured position over several seconds. This ad-
justment accommodates for the gradual change
of the neutral position and rotation of the user’s
head. To avoid an unwanted compensation when
the user is at the extreme ends of the tracking
range, e.g., when looking at an object from the
side, the adjustment is reduced towards the outer
regions of the tracking volume.

3.3 Data Model

The data model is a description of how to pack
the values from head tracking and future facial
expression recognition into a data structure that
can be easily extended, but at the same time also
easily compressed and transmitted.

Each parameter of the data model has

• a unique ID, e.g., HeadPosX, HeadRotY,
ExpressionType, ExpressionLevel,

• a predetermined value range, e.g., from −1
to +1, and

• a predetermined precision in bits.

When sending a parameter, the value is converted
into an integer with the stated amount of bits,
and the ID is converted into a simple 16 bit hash
value. Especially for a data model with a large
number of parameters with long IDs, this con-
version results in a significant reduction of the
data volume that has to be sent over the network.
However, it is possible that two different IDs can
result in the same hash code. Therefore, we check
for such hash collisions in our implementation.

On the receiver side, the value is uncom-
pressed back into the original range and the ID
hash is used to find the parameter to update with
the new value. The precision has to be chosen so
that rounding errors have no visible or accumu-
lative effect.

ClientsClients

User Avatar
Client Entity

User Avatar
Server Entity

User Avatar
Client Entity

Input Module

Client Server Clients

Control Input

Extended Client Data Packet

Build compressed
client data packet

Unpack and evaluate

Network VariablesNetwork Variables

Display on screen Display on screen

Run simulation step

other Client
Data Packets

User Xpressor

Tracking Data

Head
Movement

Figure 11: Data exchange between Xpressor, the VE clients, and the server

The data model is hard coded into Xpressor
and the VE engine. It cannot be extended in
runtime.

Figure 11 visualises the extension in the data
flow between the VE clients and server. Because
of the fast local UDP connection between Xpres-
sor and the client, the data is transferred un-
compressed, Between the clients and the server
however, bandwidth can be limited, therefore the
parameters are compressed according to the prin-
ciple described above.

Different factors were influential for the choice
of the value range and precision of parameters.

For the head rotations, we used the physi-
cal limitations of the human neck listed in Tilley
(2002). Rotation around the X axis (nodding)
is limited to ±50◦, rotation around the Y axis
(shaking) is limited to ±60◦, and rotation around
the Y axis (rolling) is limited to ±54◦. A precision
of 10 bit was sufficient to cause no visible steps in
the rotation.

For the head translation, we chose a range
±50 cm in all directions, which is sufficient for
any head movement while sitting on a chair. A
precision of 12 bit was sufficient to cause no visi-
ble steps in the translation.

Other parameters, such as facial expression
type and level, usually were limited to a range
between 0 and 1 and to a precision of 5 bit to
8 bit.

4 RESULTS

The modification of the Source Engine into a
virtual environment for medical teamwork train-
ing with webcam support for HCP and head ges-
tures was a non-trivial process due to the com-

plexity and insufficient documentation of the en-
gine, but allowed for rapid prototyping of early
design stages.

All software outside of the VE engine, e.g.,
Xpressor, was kept modular, as well as most of
the code we created to add functionality to the
VE engine. This enabled us in the early stages of
our experiments to easily exchange our own head
tracking module by faceAPI.

However, features or modifications that re-
quired deep changes within the original code had
to be kept close to the coding style of the SDK
itself, resulting in suboptimal program code. The
latter problem might be of a different magnitude
when using different game engines, e.g., Unity 3D
(Unity Technologies, 2011) that provide a more
structured codebase to program against. The
problems with the complexity of the code of the
Source SDK were increased by insufficient docu-
mentation. A lot of development time was spent
on deciphering the code or consulting the forums
and developer websites for examples to compen-
sate for the lack of documentation. To avoid this
problem, it is important to put more emphasis on
the quality of the documentation and the code of
a game engine when engines are considered for
selection.

Another time-consuming part of the develop-
ment phase was the removal of unnecessary parts
of the original deathmatch game (e.g., weapon
code). Originally, this was the only codebase
provided for the Source Engine. At about two
years into the project, Valve provided a slightly
modified SDK source code that allowed for the
integration of additional aspects of the game:
new player movements (e.g., prone, sprinting),
player classes, teams, etc. However, this flexi-
bility was implemented by adding a large amount

of #ifdef ... #endif preprocessor directives to
the code, which was not improving the readabil-
ity. Instead of providing this large configurable
codebase, it would have been more helpful to have
several different smaller examples instead, from
which to choose the most appropriate one for the
desired simulation. This is another factor to con-
sider in the game engine selection phase: Is there
a multitude of example programs from which to
choose a suitable one as a starting point or that
assist in understanding certain aspects of the en-
gine?

Content for our VE was created using the free
3D editor Blender (Blender Foundation, 2011)
and the tools provided by the Source Engine, e.g.,
the map editor Hammer and the character an-
imation tool Faceposer. Most time during con-
tent creation was spent on figuring out ways how
to simulate a specific effect or physical behaviour
with the engine which is optimized for fast action
gameplay, not for precise simulations. On several
occasions, we had to compromise between realism
and the ability of the engine to simulate a specific
feature. One example is the bleeding that occurs
during the surgical procedure we designed for the
multi-user study. The Source Engine does not
provide physically correct fluid simulation. In-
stead, we created a particle effect that resembles
a little fountain.

We measured the “success” of the design and
implementation of our VE indirectly by the user
studies we conducted for our overall goal: to show
improvements of usability, realism, and effective-
ness of VE-based training scenarios by including
camera-based non-verbal communication support
and intuitive HCP-based view control.

Overall, the VE proved to be stable and intu-
itive to use for the participants, regardless if they
were experienced in playing computer games or
not. Our studies comparing manual view control
against HCP showed that HCP is an intuitive and
efficient way of controlling the view, especially for
inexperienced users (Marks et al., 2010).

For highest user comfort, it is important that
the delay between physical head movement and
virtual camera movement is as short as possible.
Our framework was able to deliver a relatively
short response time of about 100 ms. However,
this delay lead to participants repeatedly over-
shooting their view target. We suspect that the
delay is a sum of several smaller delays in each
processing stage of the data flow, therefore re-
quiring several different optimisation steps for an
improvement.

For our latest user study, we created a sur-
gical teamwork training scenario and alternated
between HCP and avatar control being enabled
or disabled to investigate the effect of tracking-
based avatar head movement on non-verbal com-
munication within a VE. The results showed an
increase in perceived realism of the communica-
tion within the environment (Marks et al., 2011).
An effect on teamwork training effectiveness was
not proven, but might have been masked by the
experiment design. A clarification is subject to
future research.

5 CONCLUSION

In summary, the Source Engine is suitable for
rapidly developing a teamwork training VE, as
long as the changes required to the original SDK
code are not too major. The more functionality
that is necessary for specific features of the de-
sired VE, the more complex the coding task be-
comes. At a certain point, it would be infeasible
to use this engine and alternative game engines
would have to be considered.

However, the Source Engine proved stable and
flexible enough for our medical teamwork train-
ing scenario with additional support for HCP and
camera-controlled avatar head gestures. The user
studies we have conducted show that these exten-
sions are well received, and improve the usability
and the perceived realism of the simulation. In
addition, the digital recording of the interactions
and behaviours within the VE is a valuable sup-
port for automated (e.g., with tools like Observer
XT) as well as “manual” assessment of teamwork
performance.

REFERENCES

Bartlett, M., Littlewort, G., Wu, T., and Movellan,
J. (2008). Computer Expression Recognition Tool-
box. In Demo: 8th Int’l IEEE Conference on Au-
tomatic Face and Gesture Recognition.

Blender Foundation (2011). Blender. http://www.
blender.org.

Danforth, D., Procter, M., Heller, R., Chen, R., and
Johnson, M. (2009). Development of Virtual Pa-
tient Simulations for Medical Education. Journal
of Virtual Worlds Research, 2(2):3–11.

Linden Research, Inc (2010). Second Life. http://
secondlife.com.

http://www.blender.org
http://www.blender.org
http://secondlife.com
http://secondlife.com

MacNamee, B., Rooney, P., Lindstrom, P., Ritchie,
A., Boylan, F., and Burke, G. (2006). Serious
Gordon: Using Serious Games To Teach Food
Safety in the Kitchen. In Proceedings of the 9th In-
ternational Conference on Computer Games: AI,
Animation, Mobile, Educational & Serious Games
(CGAMES06).

Marks, S., Windsor, J., and Wünsche, B. (2007).
Evaluation of Game Engines for Simulated Surgical
Training. In GRAPHITE ’07: Proceedings of the
5th international conference on Computer graphics
and interactive techniques in Australia and South-
east Asia, pages 273–280, New York, NY, USA.
ACM.

Marks, S., Windsor, J., and Wünsche, B. (2010).
Evaluation of the Effectiveness of Head Tracking
for View and Avatar Control in Virtual Environ-
ments. 25th International Conference Image and
Vision Computing New Zealand (IVCNZ) 2010.

Marks, S., Windsor, J., and Wünsche, B. (2011).
Head Tracking Based Avatar Control for Virtual
Environment Teamwork Training. In Proceedings
of GRAPP 2011.

Messinger, P. R., Stroulia, E., Lyons, K., Bone, M.,
Niu, R. H., Smirnov, K., and Perelgut, S. (2009).
Virtual Worlds – Past, Present, and Future: New
Directions in Social Computing. Decision Support
Systems, 47(3):204–228.

Noldus Information Technology (2010). Ob-
server XT. http://www.noldus.com/
human-behavior-research/products/
the-observer-xt.

Queiroz, R. B., Cohen, M., and Musse, S. R. (2010).
An extensible framework for interactive facial ani-
mation with facial expressions, lip synchronization
and eye behavior. Computers in Entertainment
(CIE) - SPECIAL ISSUE: Games, 7:58:1–58:20.

Ritchie, A., Lindstrom, P., and Duggan, B. (2006).
Using the Source Engine for Serious Games. In
Proceedings of the 9th International Conference on
Computer Games: AI, Animation, Mobile, Educa-
tional & Serious Games (CGAMES06).

Sko, T. and Gardner, H. J. (2009). Human-Computer
Interaction — INTERACT 2009. In Gross, T.,
Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque,
P., Prates, R. O., and Winckler, M., editors, Lec-
ture Notes in Computer Science, volume 5726/2009
of Lecture Notes in Computer Science, chapter
Head Tracking in First-Person Games: Interac-
tion Using a Web-Camera, pages 342–355. Springer
Berlin / Heidelberg.

Smith, S. P. and Trenholme, D. (2009). Rapid
prototyping a virtual fire drill environment using
computer game technology. Fire Safety Journal,
44(4):559–569.

Susi, T., Johannesson, M., and Backlund, P. (2007).
Serious Games -– An Overview. Technical report,
School of Humanities and Informatics, University
of Skövde, Sweden.

Taekman, J., Segall, N., Hobbs, E., and Wright,
M. (2007). 3DiTeams — Healthcare Team Train-
ing in a Virtual Environment. Anesthesiology,
107(A2145):A2145.

The Apache Software Foundation (2011). Apache
Subversion. http://subversion.apache.org.

Tilley, A. R. (2002). The Measure of Man and
Woman. John Wiley & Sons, second edition.

Unity Technologies (2011). UNITY: Unity 3 Engine.
http://unity3d.com/unity/engine.

Valve Corporation (2007). Source Engine. http://
source.valvesoftware.com.

Valve Corporation (2010). Source Coding – Steam
User’s Forums. http://forums.steampowered.
com/forums/forumdisplay.php?f=195.

Valve Developer Community (2010a). Compiling un-
der VS2008. http://developer.valvesoftware.
com/wiki/Compiling_under_VS2008.

Valve Developer Community (2010b). IK Chain.
http://developer.valvesoftware.com/wiki/
$ikchain.

Valve Developer Community (2010c). My First
Mod. http://developer.valvesoftware.com/
wiki/First_Mod.

Valve Developer Community (2010d). Networking
Entities. http://developer.valvesoftware.com/
wiki/Networking_Entities.

Valve Developer Community (2010e). Source
Multiplayer Networking. http://developer.
valvesoftware.com/wiki/Net_graph.

Valve Developer Community (2010f). Using Sub-
version for Source Control with the Source SDK.
http://developer.valvesoftware.com/wiki/
Using_Subversion_for_Source_Control_with_
the_Source_SDK.

http://www.noldus.com/human-behavior-research/products/the-observer-xt
http://www.noldus.com/human-behavior-research/products/the-observer-xt
http://www.noldus.com/human-behavior-research/products/the-observer-xt
http://subversion.apache.org
http://unity3d.com/unity/engine
http://source.valvesoftware.com
http://source.valvesoftware.com
http://forums.steampowered.com/forums/forumdisplay.php?f=195
http://forums.steampowered.com/forums/forumdisplay.php?f=195
http://developer.valvesoftware.com/wiki/Compiling_under_VS2008
http://developer.valvesoftware.com/wiki/Compiling_under_VS2008
http://developer.valvesoftware.com/wiki/$ikchain
http://developer.valvesoftware.com/wiki/$ikchain
http://developer.valvesoftware.com/wiki/First_Mod
http://developer.valvesoftware.com/wiki/First_Mod
http://developer.valvesoftware.com/wiki/Networking_Entities
http://developer.valvesoftware.com/wiki/Networking_Entities
http://developer.valvesoftware.com/wiki/Net_graph
http://developer.valvesoftware.com/wiki/Net_graph
http://developer.valvesoftware.com/wiki/Using_Subversion_for_Source_Control_with_the_Source_SDK
http://developer.valvesoftware.com/wiki/Using_Subversion_for_Source_Control_with_the_Source_SDK
http://developer.valvesoftware.com/wiki/Using_Subversion_for_Source_Control_with_the_Source_SDK

	Introduction
	Design
	Implementation
	Virtual Environment
	Steam Client
	Creating a New Project
	Version Control
	Concepts of the Source Engine
	Stripping Down the Engine
	SDK Inconsistencies
	Changing the Interaction
	Changing the User Interface
	Body Awareness
	Textures
	Data Logging

	Xpressor
	Data Model

	Results
	Conclusion

